
1. Once authenticated to Oscar, use the following commands at the command line.

2. Start an interactive job by using the interact command. This command can take additional
parameters to extend the resources and time allotted to the node as well as the partition that the
node operates on.

3. The Sage module provides containers. To load them use module load sage-container/10.3 .

4. To start the container use apptainer shell /oscar/rt/9.2/software/0.20-generic/0.20.1/opt/spack/linux-rhel9-
x86_64_v3/gcc-11.3.1/sage-container-10.3-avpqipfsnbneig726l72jrgdmlrivg4m/sage.sif

5. Once inside the container's shell use sage to launch the Sage console.

The easiest way to run Sage on Oscar OcDemand is to run sage in an interactive job via the
terminal in your OnDemand session.

Use the interact command with parameters for your specific job to start the interactive session,
then load your modules and run the sage binary (steps 2-4 above).

Thanks to Trevor Hyde from Summer@ICERM 2019 for these instructions.

One method for running computations with Sage on Oscar is to write a script and use the slurm
batch scheduler to have Oscar run your script. This requires two pieces:

Oscar: Sage

Loading and Launching Sage

Sage on Oscar OnDemand

interact -n 2 -m 32g -t 04:00:00 -f 'haswell|broadwell|skylake'

Using Sage with Batch Scripts

https://docs.ccv.brown.edu/oscar/submitting-jobs/interact
https://docs.ccv.brown.edu/oscar/submitting-jobs/interact

1. A shell script to configure and submit your batch job to the cluster.
2. Your Sage code/program you'd like to run.

sage-batch.sh

#!/bin/bash tells the system this is a bash (shell) script.
#SBATCH -J test_program sets the name of the job which appears when you check the status
of your jobs.
#SBATCH –array=0-9 is an easy way of doing parallel computations. In this case it says our
job will run on 10 different nodes, each node will be passed a parameter and we have
specified that the parameters will take the values 0 through 9. You can specify several
ranges or even list individual parameters if you prefer.
#SBATCH -t 1:00:00 specifies a time limit in HH:MM:SS for each node. Once this time runs
out your program will stop running on that node. Be careful setting the time limit too high
as doing so may make it take a long time for your job to get scheduled to run. Before
starting a big computation try to do some smaller tests to see how long you expect to
need.
#SBATCH –mem=8G specifies how much memory each node gets. Standard exploratory
accounts get 123GB total to use at any one time. So if you allocate too much per job,
fewer jobs will run at once. On the other hand, if you allocate too little and a computation
needs more than it has, then it will terminate. If this happens an “out of memory” error
will show up in the .err file for that node.

Example Batch Script

#!/bin/bash

#SBATCH -J test_program
#SBATCH --array=0-9
#SBATCH -t 1:00:00
#SBATCH --mem=8G

#SBATCH -e data/<oscar-username>/test_output/test%a.err
#SBATCH -o data/<oscar-username>/test_output/test%a.out

module load sage-container/10.3

apptainer shell /oscar/rt/9.2/software/0.20-generic/0.20.1/opt/spack/linux-rhel9-x86_64_v3/gcc-11.3.1/sage-
container-10.3-avpqipfsnbneig726l72jrgdmlrivg4m/sage.sif

sage test_program.sage $SLURM_ARRAY_TASK_ID

#SBATCH -e data/<ccv-username>/test_output/test%a.err and #SBATCH -o data/<ccv-
username>/test_output/test%a.out specify where the error messages and output for each
computation should be sent. You should store these files in your user folder, not on the
submit node. We each have a folder inside the data directory which you can see from the
submit node. In this example I have created a folder titled test_output where I’m putting
both of these files. You need to make these folders before you run the
computation otherwise the output will be dumped into the void! The %a will get
replaced with the array parameter. So for example, since we set our array parameters to
be 0-9 there will be 10 nodes running and each of them gets a number between 0 and 9;
this node corresponding to the parameter 7 will create two files test7.err and test7.out .
module load sage-container/10.3 loads the sage container into the node.
apptainer shell /oscar/rt/9.2/software/0.20-generic/0.20.1/opt/spack/linux-rhel9-x86_64_v3/gcc-

11.3.1/sage-container-10.3-avpqipfsnbneig726l72jrgdmlrivg4m/sage.sif initiates the container's Sage
console shell.

Everything after this in the script happens as if you typed it yourself onto the command line.

In our example, we want to run sage code, so the line sage test_program.sage
$SLURM_ARRAY_TASK_ID runs our example sage program test_program.sage .
The file needs to have the .sage extension.
You should write this file in a text editor, not in a Jupyter notebook (although you can first
write and test your program in a Jupyter notebook and then copy and paste it into a new
file when it’s ready).
This program is written to accept one input and I have passed it $SLURM_ARRAY_TASK_ID
 which is the array parameter passed to each node. You can use this parameter to select
which input parameters to run your program on.

test_program.sage

In the Sage program, you first define all of your functions and then you include the code
you want to run.

Example Sage Program

import sys

def fun_math(message):
 print message
 sys.stdout.flush()

job_id = int(sys.argv[1])
fun_math('hi this is a test')
fun_math('my job id is' + str(job_id))

Import sys so you can access the array parameter passed to your function from the node.
This is accessed in this case by sys.argv[1] . Make sure you explicitly coerce to be an
integer if you want to use it as an integer; it's a string by default.
The output of the print command is appended to the .out file for this node as a new line.
Notice the line sys.stdout.flush() included in the function. This makes the program
immediately send whatever output it has to the output file when called. Otherwise the
program won’t output anything until it has completely finished running. If each node is
running 100 potentially long computations and it finishes the first 99 but then times out
on the 100th computation, and you don’t include any sys.stdout.flush() commands,
everything will be lost when time runs out.

To run this batch program go back to the submit node and type sbatch
<NAME_OF_BATCH_FILE> . In our example here, our batch file is called sage-batch.sh , so we
simply type sbatch sage-batch.sh Slurm will return a line that tells you your job has been
submitted together with a job id number.
To check the progress of your jobs type myq from anywhere on Oscar. This will show you
what jobs you have running, how much time they have left, and which jobs are still
waiting to run. Be patient, sometimes it takes a minute for things to get started.
If you realize your code is never going to finish or that you’ve made some terrible mistake,
you can cancel a batch job by typing scancel <JOB_ID> . You can specify a single node or
just put the general job id for the whole run and cancel everything.

Submitting the Batch Job

Revision #5
Created 10 November 2021 19:50:36
Updated 5 December 2024 13:54:02 by Leo Bunyea

